Derivation of PV=nRT (Ideal Gas Law)

Assumptions of Kinetic Theory

  • Gases are composed of very small molecules and their number is very large
  • These molecules are elastic
  • They are negligible in size compared to their container
  • Their thermal motions are random

To begin, let's visualize a rectangular box with length L, areas of ends A1 and A2. There is a single molecule with speed vx traveling left and right to the end of the box by colliding with the end walls.

Ideal gas molecule movement demonstration
  1. Time between collisions with the wall:

    t=2Lvxt=\frac{2L}{v_x}
  2. Frequency of collisions:

    f=1t=12L/vx=vx2Lf=\frac{1}{t}=\frac{1}{2L/v_x}=\frac{v_x}{2L}
  3. Force according to Newton:

    F=dpdt=maF=\frac{dp}{dt}=ma
  4. Change in momentum:

    Δp=mvx(mvx)=2mvx\Delta{p}=mv_x-(-mv_x)=2mv_x
  5. Average force in terms of particle velocity:

    F=Δp(f)=2mv(vx2L)=mvx2L\overline{F}=\Delta{p}(f)=2mv(\frac{v_x}{2L})=\frac{mv_x^2}{L}
  6. Pressure for a single molecule:

    P1Molecule=FA=(mvx2L)/A=mvx2LA=mvx2VP_{1\:Molecule}=\frac{\overline{F}}{A}=(\frac{mv_x^2}{L})/A=\frac{mv_x^2}{LA}=\frac{mv_x^2}{V}
  7. For N molecules traveling on x-axis:

    PNMolecules=mV(vx12+vx22+vx32....+vxN2)=a=0Nmvxa2VP_{N\:Molecules}=\frac{m}{V}(v_{x_1}^2+v_{x_2}^2+v_{x_3}^2....+v_{x_N}^2)=\sum_{a=0}^{N}\frac{mv_{x_a}^2}{V}
  8. Using mean square speed:

    PNParticles=Nmvx2VP_{N\:Particles}=\frac{Nm\overline{v_x^2}}{V}
  9. Considering all three dimensions:

    v2=vx2+vy2+vz2\overline{v^2}=\overline{v^2_x}+\overline{v^2_y}+\overline{v^2_z}

    With equal distribution in all directions:

    vx2=vy2=vz2\overline{v^2_x}=\overline{v^2_y}=\overline{v^2_z}
  10. Final pressure equation in 3D:

    P=Nmv23VP=\frac{Nm\overline{v^2}}{3V}
  11. Relating kinetic energy to temperature:

    Ekinetic=mv22TE_{kinetic}=\frac{mv^2}{2}\propto{T}
  12. Solving for kinetic energy:

    mv2=2Ekineticmv23=2Ekinetic3mv^2=2E_{kinetic}\Rightarrow\frac{mv^2}{3}=\frac{2E_{kinetic}}{3}
  13. Introducing Boltzmann constant k:

    kT=mv23=2Ekinetic3kT=\frac{mv^2}{3}=\frac{2E_{kinetic}}{3}
  14. Combined pressure equation:

    P=NVmv23=NV2Ekinetic3=NVkT=NkTVP=\frac{N}{V}\frac{m\overline{v^2}}{3}=\frac{N}{V}\frac{2E_{kinetic}}{3}=\frac{N}{V}kT=\frac{NkT}{V}
  15. Converting to moles using Avogadro's number:

    n=NNan=\frac{N}{N_a}
    R=NakR=N_ak
  16. Final ideal gas law:

    P=nRTVPV=nRTP=\frac{nRT}{V}\Rightarrow{PV=nRT}

Calculation of Constants

One mole of gas in a 22.4L vessel at 273K exerts a pressure of 1.00 atmosphere:

R=PVnT=(1atm)(22.4L)(1mol)(273K)=0.082LatmmolKR = \frac{PV}{nT}=\frac{(1\:atm)(22.4L)}{(1\:mol)(273K)}=0.082\frac{L\:atm}{mol\:K}
k=RNak=0.082Latm/molK6.0221x1023/mol=1.3806504x1025LatmKk=\frac{R}{N_a}\Rightarrow{k=\frac{0.082\:L\:atm/mol\:K}{6.0221\:x\:10^{23}/mol}}=1.3806504\:x\:10^{-25}\frac{L\:atm}{K}